zabbix email alarm

2023-01-21   ES  

import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils import check_random_state, check_array
from sklearn.metrics.pairwise import rbf_kernel
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = datasets.load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3)
nClass = len(np.unique(y))

Z = np.zeros((len(X_train), nClass))

for i in range(len(y_train)):
    Z[i,y_train[i]] += 1

K = rbf_kernel(X_test, X_train)

n_neighbors = 4

indices = np.argpartition(K, -n_neighbors, axis=1)[:,-n_neighbors:]
P = np.empty((len(X_test), nClass))

for i in range(len(X_test)):
    P[i,:] = K[i, indices[i]] @ Z[indices[i], :]

normalizer = np.sum(P, axis=1)
P[normalizer > 0] /= normalizer[normalizer > 0, np.newaxis]
P[normalizer == 0, :] = [1 / nClass] * nClass

y_pred = np.argmax(P, axis=1)
acc = accuracy_score(y_test, y_pred)
print("ACC::",acc)

After the useless

tmp_train_ids = Self.abslabeled + Self.intlabeled 
 num_abslabeled = Len (Self.abslabeled) 
 # --------- Z is used to store training sample attribution ------------- 
 Z = np.zeros (len (tmp_train_ids), seld.nclass)) 
 for, idx in enumerate (tmp_train_ids): 
     if i <num_abslabeled: 
         Z [i, self.y [IDX]] += 1 
     else: 
         for lab in self.xin [IDX] .Inter: 
             Z [i, lab] = self.xin [idx] .prob [lab] 

 # ------------- K is the similarity matrix, and the radial cupuctuctive function ------------------ 
 TMP_TEST_IDS = SELF.INTLABELED + SELF.TMP_SELECTED 
 K = rbf_kernel (self.x [tmp_test_ids], self.x [tmp_train_ids]))) 

 
 n_neighbors = Self.nClass 
 if n_neighbors <Len (tmp_train_ids): 
     n_neighbors = len (tmp_train_ids) 
 # Print ("n_neighbors ::", n_neighbors) 

 # ------------ Near neighboring index ------------------ 
 indices = np.argpartition (k, -n_neighbors, axis = 1) [:, -n_neighbors:] 
 P = np.empty (len (tmp_test_ids), self.nclass)) 
 # Print ("p :::", P.Shape) 
 # Print ("k :::", k.shape) 
 # Print ("k ==", k) 
 # Print ("Indices ::", Indices.shape) 
 # Print ("indices ==", indiceS) 

 # ------------------------------------ 
 for, idx in enumerate (TMP_TEST_IDS): 
     P [i ,:] = k [i, indiceS [i]] @ z [Indices [i],:] 
 # ----------------------------------------------- 
 normalizer = np.sum (p, axis = 1) 
 P [normalizer> 0] /= normalizer [normalizer> 0, np.newaxis] 
 P [normalizer == 0,:] = [1 / seld.nclass] * seld.nclass 

 # ---------- The probability value of updating the storage space --------------- 
 for, idx in enumerate (TMP_TEST_IDS): 
     self.xin [IDX] .prob = OrdereDDICT () 
     for lab in self.xin [IDX] .Inter: 
         self.xin [IDX] .prob [lab] = p [i,:] [Self.labels.index (lab)] 
     Print ("Sample: {} Probability distribution: {}". Format (IDX, Self.xin [IDX] .prob)) 

 # ----------- Maximum matchomy according to the post-test probability that there are marking samples --------------- 
 for idx in tmp_test_ids: 
     self.xin [IDX] .evalab = max (self.xin [idx] .prob, key = self.xin [idx] .prob.get)

source

Related Posts

Uiapplication detailed explanation

wgs84 Earth coordinate system, GCJ02 Mars coordinate system, BD09 Baidu coordinate system profile and conversion

OPENCV cross compilation contains ffmpeg

Protective measures for vulnerabilities of Android application

zabbix email alarm

Random Posts

1 1 1 1 1 1 1 1 1 1 overall review

Python Anaconda2 Install OpenCV2’s vast water

Raspberry Pi docker run mysql

neural network and deep learning notes (3) The activation function and parameter initialization

wgs84 Earth coordinate system, GCJ02 Mars coordinate system, BD09 Baidu coordinate system profile and conversion