First of all, we must reverse the original image, because all the operations after the algorithm take 0 as the foreground and 1 as the background.
The 8-near-neighbor definition of
center pixel X_1 (x, y) is shown below:
Consider the following two steps
- Step 1: Perform the grating scan and mark all the pixels that meet the following 5 conditions:
- This is a black pixel;
- clockwise viewing X2, X3, …, X9, X2, the number of changes from 0 to 1 is only 1;
- x2, x3, …, x9, 1 of 1 or less than 2 or less;
At least 1 of
- x2, x4, and x6 is 1;
- x4, x6, x8, at least one is 1;
All pixels that meet the conditions are 1
- Step 2: Perform the grating scan and mark all the pixels that meet the following 5 conditions:
- This is a black pixel;
- Clockwise to view X2, X3, …, X9, X2, the number of changes from 0 to 1 is only 1;
- x2, x3, …, x9, 1 of 1 or less than 2 or less;
At least 1 of
- x2, X4, X8 is 1;
At least 1 of
- x2, X6, X8 is 1;
All pixels that meet the conditions are 1
- Repeat step 1 and step 2 until there is no change.
python implementation:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Zhang Suen thining algorythm
def Zhang_Suen_thining(img):
# get shape
H, W, C = img.shape
# prepare out image
out = np.zeros((H, W), dtype=np.int)
out[img[..., 0] > 0] = 1
# inverse
out = 1 - out
while True:
s1 = []
s2 = []
# step 1 ( rasta scan )
for y in range(1, H-1):
for x in range(1, W-1):
# condition 1
if out[y, x] > 0:
continue
# condition 2
f1 = 0
if (out[y-1, x+1] - out[y-1, x]) == 1:
f1 += 1
if (out[y, x+1] - out[y-1, x+1]) == 1:
f1 += 1
if (out[y+1, x+1] - out[y, x+1]) == 1:
f1 += 1
if (out[y+1, x] - out[y+1,x+1]) == 1:
f1 += 1
if (out[y+1, x-1] - out[y+1, x]) == 1:
f1 += 1
if (out[y, x-1] - out[y+1, x-1]) == 1:
f1 += 1
if (out[y-1, x-1] - out[y, x-1]) == 1:
f1 += 1
if (out[y-1, x] - out[y-1, x-1]) == 1:
f1 += 1
if f1 != 1:
continue
# condition 3
f2 = np.sum(out[y-1:y+2, x-1:x+2])
if f2 < 2 or f2 > 6:
continue
# condition 4
# x2 x4 x6
if (out[y-1, x] + out[y, x+1] + out[y+1, x]) < 1 :
continue
# condition 5
# x4 x6 x8
if (out[y, x+1] + out[y+1, x] + out[y, x-1]) < 1 :
continue
s1.append([y, x])
for v in s1:
out[v[0], v[1]] = 1
# step 2 ( rasta scan )
for y in range(1, H-1):
for x in range(1, W-1):
# condition 1
if out[y, x] > 0:
continue
# condition 2
f1 = 0
if (out[y-1, x+1] - out[y-1, x]) == 1:
f1 += 1
if (out[y, x+1] - out[y-1, x+1]) == 1:
f1 += 1
if (out[y+1, x+1] - out[y, x+1]) == 1:
f1 += 1
if (out[y+1, x] - out[y+1,x+1]) == 1:
f1 += 1
if (out[y+1, x-1] - out[y+1, x]) == 1:
f1 += 1
if (out[y, x-1] - out[y+1, x-1]) == 1:
f1 += 1
if (out[y-1, x-1] - out[y, x-1]) == 1:
f1 += 1
if (out[y-1, x] - out[y-1, x-1]) == 1:
f1 += 1
if f1 != 1:
continue
# condition 3
f2 = np.sum(out[y-1:y+2, x-1:x+2])
if f2 < 2 or f2 > 6:
continue
# condition 4
# x2 x4 x8
if (out[y-1, x] + out[y, x+1] + out[y, x-1]) < 1 :
continue
# condition 5
# x2 x6 x8
if (out[y-1, x] + out[y+1, x] + out[y, x-1]) < 1 :
continue
s2.append([y, x])
for v in s2:
out[v[0], v[1]] = 1
# if not any pixel is changed
if len(s1) < 1 and len(s2) < 1:
break
out = 1 - out
out = out.astype(np.uint8) * 255
return out
# Read image
img = cv2.imread("../thin.png").astype(np.float32)
# Zhang Suen thining
out = Zhang_Suen_thining(img)
# Save result
cv2.imwrite("out.png", out)
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
Experimental results: