Chapter 1 Principles of Computer Storage Information

2023-02-28   ES  

hadamard scores and order slight scores:
D α y ( t ) = 1 Γ ( n − α ) ( t d d t ) n ∫ 1 t ( ln ⁡ t s ) n − α + 1 y ( s ) d s s D^\alpha y(t)=\frac{1}{\Gamma(n-\alpha)}\left(t\frac{\rm{d}}{
{\rm d}t}\right)^n\int_1^t\left(\ln\frac{t}{s}\right)^{n-\alpha+1}y(s)\frac{
{\rm d}s}{s}
Dαy(t)=Γ(nα)1(tdtd)n1t(lnst)nα+1y(s)sds

Among them, α ∈ [ n − 1 , n ) , n ∈ Z + \alpha\in[n-1,n),n\in\Z^+ α[n1,n),nZ+


Hadamard scores:
I α y ( t ) = 1 Γ ( α ) ∫ 1 t ( ln ⁡ t s ) α − 1 y ( s ) d s s I^\alpha y(t)=\frac{1}{\Gamma(\alpha)}\int_1^t\left(\ln\frac{t}{s}\right)^{\alpha-1}y(s)\frac{
{\rm d}s}{s}
Iαy(t)=Γ(α)11t(lnst)α1y(s)sds


Among them Γ ( ⋅ ) \Gamma(·) Γ()is the Gamma function

Γ ( x ) = ∫ 0 + ∞ t x − 1 e − t   d t ( x > 0 ) \Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} \mathrm{~d} t(x>0) Γ(x)=0+tx1et dt(x>0)

source

Related Posts

AIX+Oracle11g+ASM Add Disk expansion LHDZ

Unity3D —— Model Click events

Record once Elastic-JOB Faber Query and Basic Concept understanding

Raspberry Pi docker run mysql

Chapter 1 Principles of Computer Storage Information

Random Posts

X-axis length, that is, gray level axis_params = [] axis_params.append (0) axis_params.append (x_size) #plt.figure () if name! = None: PLT.TITLE (name) PLT.BAR (Tuple (Keys), Tuple (Values))#Draw a histogram #PLT.SHOW () #Map the ash array as a histogram dictionary, nums represents the magnitude of the grayness DEF ArrayTohist (Grayarray, Nums): if (len (grayarray.shape)! = 2): Print (“length error”) Return None w, h = Grayarray.shape Hist = {} For K in Range (NUMS): Hist [k] = 0 for I in Range (W): for j in range (h): if (hest.get (grayarray [i] [j]): is none): history [grayarray [i] [j]] = 0 Hist [grayarray [i] [j]] += 1 #normalize n = w*h for key in history.keys (): Hist [key] = float (history [key])/n Return Hist #Accut the cumulative histogram calculating new balanced pictures, nums is grayscale, 256 DEF Equalization (Grayarray, H_S, Nums): #Calculation accumulated histogram TMP = 0.0 h_acc = h_s.copy () for I in Range (256): TMP += H_S [i] h_acc [i] = tmp if (len (grayarray.shape)! = 2): Print (“length error”) Return None w, h = Grayarray.shape des = np.zeros ((w, h), dtype = np.uint8) for I in Range (W): for j in range (h): des [i] [j] = int ((nums – 1)* h_acc [grayarray [i] [j]] +0.5) Return des DEF HISTMATCH (Grayarray, H_D): #Calculation accumulated histogram TMP = 0.0 h_acc = h_d.copy () for I in Range (256): TMP += H_D [i] h_acc [i] = tmp h1 = Arraytohist (Grayarray, 256) TMP = 0.0 h1_acc = h1.copy () for I in Range (256): TMP += H1 [i] h1_acc [i] = tmp #Calculation mapping M = np.zeros (256) for I in Range (256): IDX = 0 minv = 1 for j in h_acc: if (np.fabs (h_acc [j] -h1_acc [i])

nyoj to find the remaining number

Simply achieve the effect of horse rampant lights with code

Electric Vehicle AMT shifting law Study -Calculation of shifting points

10.31 NOIP simulation race (Morning)